ELV PROJECT CONTINUOUS RISK MANAGEMENT PROCESS # ATTACHMENT A # **Technical Risk Criteria** | | | Likelihood Level | | | | | |---|---|--|---|---|--|--| | # | Risk | 4 | 3 | 2 | 1 | | | | Category | High (91-99%) | Significant (41-90%) | Moderate (10-40%) | Low (1-9%) | | | 1 | Project/Missi | on | | | | | | 1 | Key Personnel
Experience
ELVPO
LVC | Expertise not assigned to program | Core expertise only assigned to program | Core expertise assigned and other personnel available and coming up to speed | All required expertise assigned | | | 2 | Processes | Processes are informal | Processes are partially documented and approved | Processes are largely documented and approved | Processes are in place and approved | | | 3 | Analytical Tools | No tool exists for given discipline | Tool identifed and in process of procurement, or is under development | Adequate tools in place and being verified with actual data | Adequate tools in use and verified with flight data | | | 2 | Systems Engi | neering | | | | | | 1 | Requirements
Identification | No defined or
detailed process or
model to identify
requirements | Process established with trial
model but not yet
proven/implemnted | Process established with
proven model and being
implemented | Process and model
well established and
requirements
identified and
approved | | | 2 | Requirements
Complexity | Complex
requirements
interaction based on
new design | Complex requirements interaction based on existing design | Typical requirements
interaction based on new
design | Little or no
requirements
interaction based on
existing design | | | 3 | Requirements
Volatility | High requirements change or growth activity | Significant requirements change or growth activity | Changes occurring or likely to occur in some critical requirements | Little or no requirements change activity | | | 4 | Requirements
Flowdown and
Assumptions | Informal flowdown | Requirements flowdown and documentation less than 50 % at WBS level 3, including suppliers | to WBS level 3, including suppliers | Requirements
flowdown and
documentation
completed
including suppliers | | | 5 | Requirements
Verifiability | Verification methods
do not exist for most
requirements | Verification methodst do not exist for some critical requirements | Verification methods exist for most requirements | Verification
methods exist for all
requirements with
minor exceptions | | | 6 | Performance
Capability | Vehicle cannot
deliver payload(s) to
acceptable orbit(s)
with acceptable
margin. | Vehicle can deliver payload(s) to acceptable orbit(s) with reduced but acceptable performance margin. | Vehicle can deliver payload(s) to acceptable orbit(s) with full performance margin. | Vehicle can deliver
payload(s) to desired
orbit(s) with full
performance margin
or better. | | | 7 | Performance
Modeling | Vehicle performance
model based on
immature design
(major vehicle
systems still under
development) and
limited heritage; no
related configuration
has flown. | Vehicle performance model
based on mature design with
substantial heritage, exact
configuration has not flown. | Vehicle performance model is based on 1-5 flights of exact configuration. | Vehicle performance
model is based on
established flight
history (>6) for
exact configuration. | |----|----------------------------|---|--|--|---| | 8 | Controls Design
Process | Design process not
defined and may
change significantly
from mission to
mission. Analysis
tools are not
validated with flight
data and may be
missing important
features. Analyses
do not demonstrate
controls robustness. | Design process is somewhat
defined and small changes may
occur mission to mission.
Analysis tools have been
compared with flight data and
generally mimic flight.
Analyses do not demonstrate
controls design robustness. | Design process is well defined and deviations are rare. Analysis tools are mature and validated with flight experience. Analyses demonstrate controls design robustness. | Design process is well-defined, documented and adhered to. Analysis tools are mature and validated with extensive flight experience. Analyses prove controls design robustness. | | 9 | Controls Design
Margins | One or more requirements not satisfied. Small or negative margins on constraints. | All requirements are met.
Some may have very low
margins. Constraints may be
violated or have little margin. | All requirements are met. All constraints satisfied. Performance relative to objectives is lower than is typical. | All requirements
and constraints and
most design
objectives are met
with comfortable
margin. | | 12 | Controls Design
Product | involves much hand-
calculation and/or | Constants generation involves
some hand calculation and/or
hand-transcription of data.
Many constants are not
checked. | Constants generation is mostly automated. Nearly all constants checked. | Automated constants
generation directly
from design tools.
Thorough checking
of as-built vs. as-
designed constants. | | 13 | Communications | TBD | TBD | TBD | TBD | | | Technology
Dependence | Dependent on new
technologies that are
not yet funded | Dependent on new technologies that are in development | Dependent on innovative use of existing technologies | Minor modification
of existing system or
COTS | | | Maturity of
Technology | Technology
fundamentals
understood | New technology with some test
bed experience | Technology extensively
tested at system level with
limited operational or
prototype experience | Technology used in existing systems | | 16 | Systems Test | Test problems identified. | Test problems identified and assessed. | Test problems corrected. | All Operational
Analysis problems
solved within 25
days. | | 3 | Environments | | | | | | 2 | Vibration: Acoustics, sine, random, shock Coupled Loads Analysis (CLA) Methodology | or pathfinder thermal
control materials or
design with no flight | New or derivative LV with heritage thermal control systems design, validated with test data and flight performance and data, minimum of 1 to 2 flights Derivative LV with some flight data, or new vehicle with 1 or 2 flights Derivative LV, out-of-envelop flight data, LV configuration with 1-5 flights, | Payload environment and LV thermal control systems performance established and validated by minimum of 3 flights Acoustic database exists for this LV with a minimum of three missions S/C out of previous family (mass, cg), LV configuration between 5-10 flights | Payload environment and LV thermal control systems performance well established and understood with minimum heritage of 10 flights Acoustic database exists for this LV with a minimum of 10 missions LV configuration with at least 10 flights, new generic loads analysis theory | |---|--|--|--|---|--| | 4 | Design Loads | New LV, major
design change to
LV, design change
for increased
performance | Derivative LV, out-of-envelop
flight data, LV configuration
with 1-5 flights, | S/C out of previous family (mass, cg), LV configuration between 5-10 flights | LV configuration
with at least 10
flights, new generic
loads analysis theory | | 5 | Stress | TBD | TBD | TBD | TBD | | 6 | EMC/EMI/RF | TBD | TBD | TBD | TBD | | 4 | Hardware | | | | | | 1 | Insight
Availability | No insight to design
processes, meetings,
testing, and problem
resolution | Insight into design processes, meetings, but not to testing and problem resolution | Insight into design processes, meetings, and testing but not to problem resolution | Maximum insight to
all processes,
meetings, testing,
and problem
resolution | | 2 | Complexity of
Component
Integration | Complex component
interfaces based on
new design | Complex component interfaces based on existing system | Typical component interfaces based on new design | Typical component
interfaces based on
existing design or
COTS | | 3 | Hardware
Maturity | State-of-the-Art. Some research complete. | Technology available, complex design | Major change feasible | Minor redesign or existing | | 4 | Hardware
Complexity | Innovative, complex design | Complex design based on existing system | Redesign or repackaging of existing system | Minor modification
of existing system or
COTS | | 5 | Maturity of
Design Concept | New concept requires significant development | Proof of concept has been demonstrated | Similar concept exists on
another program; able to meet
requirements by analysis | Fully developed design that meets the requirements | | 6 | Weight Prediction | Estimates based on analysis only | Estimates based on analytical models materials are known | Design complete: Estimates
based on mix of analysis and
known material weights | Actual weight
known off-the-
shelf | | 7 | Complexity of Manufacturing | New complex process | Modification of complex process | Validated complex process | Modification of
validated moderate
complexity process
and low cost | | 8 | Reliability | Fails to meet reliability requirements | Fails to meet significant reliability requirements | Fails to meet minor reliability requirements | Meets or exceeds reliability requirements | |----|--------------------------------|---|--|---|---| | 9 | Reliability
Predictions | Innovative, complex
design with no
available reliability
data | Complex design based on
existing system with no
validated reliability data | Redesign or repackaging of
existing system with known
reliability data | Minor modification
of existing system
with well
understood
reliability data or
COTS | | 10 | Supportability | Fails to meet known ILS requirements | Fails to meet significant ILS requirements | Fails to meet minor ILS requirements | Meets or exceeds
known ILS
requirements | | 11 | Materials
Maturity | Materials not completely identified | New material with some test experience | Complex prototype testing completed | Materials used in existing systems | | 12 | Supplier
Selection | Identification of development of subcontractors required | Non-qualified source | Single qualified source | Dual sourced or no subcontracting | | 13 | Supplier Expertise | Unknown or no
relevant experience;
will require major
prime assistance | Limited relevant experience;
will require prime assistance | Relevant experience; may require prime assistance | Fully capable of performing all tasks | | 14 | Supplier history | Unknown or
unacceptable cost,
schedule, or technical
performance on
relevant contracts | Unacceptable cost, schedule, or technical performance on some relevant contracts | Marginal cost, schedule, or
technical performance on
relevant contracts | Good cost, schedule,
and technical
performance on
relevant contracts | | 15 | Supplier
Proprietary Rights | Supplier owns the sole
rights to a critical
design, process, or
technology | Supplier owns the sole rights to
a critical design, process, or
technology but will negotiate
license | Proprietary rights to a critical
design, process, or
technology are licensed to the
prime or another supplier | Dual suppliers with
independent rights
to a critical design,
process, or
technology or No
proprietary rights
involved | | | Supplier
Surveillance | Supplier performance
surveillance performed
as needed | Supplier performance
surveillance performed on a
scheduled basis by a functional
group | Supplier performance
surveillance performed on a
scheduled basis by the
program | Supplier
performance tracked
using the program
Technical
Performance
Measurement (TPM) | | 5 | Software | | | | | | 1 | Software Design | Single element program structure. Mission specific requirements require recode. | Low program modularity. Low mission requirements parameterization. | High program modularity.
High mission requirements
parameterization. | Fully modular
program. Mission
requirements via
parameters only. | | 2 | Software Test | Integrated testing
limited to generic
mission class. New
integrated test
environment supported
by analysis only. | Integrated testing of nominal mission profile only. Heritage test environment with extensive modification based on analysis. | Integrated testing of nominal
and 3-sigma dispersed
mission profiles. Heritage test
environment with analysis
derived mission specific
parameters. | Full integrated testing including backups and dispersions. Heritage test environment anchored to flight data. | | 3 | Hardware- | Complex interfaces | Complex interfaces between | Typical interfaces between | Typical interfaces | |-----|-----------------------------|---|--|---|---| | 3 | | between software and | software and hardware | software and hardware | between software | | | Complexity | hardware subsystems | subsystems based on existing | subsystems based on new | and hardware | | | | based on new design | system | design | subsystems based on | | | | | | | existing design | | 4 | Software Maturity | | Major modifications driven by | Reflight of previous mission | Reflight of heritage | | | | heritage. New | changes to vehicle systems. | code allowing modifications | mission code and | | | | parameters including changes supported by | Extensive parameter modification supported | driven by flight experience. In family mission specific | parameters. | | | | analysis only. | primarily by analysis. | parameter modification. | | | | | | | | | | 5 | Software | New compiler, linker | Revision to compiler, linker or | Heritage compiler, linker and | Heritage compiler, | | | Engineering | and media production | media production tools. Critical | media production tools. | linker, media | | | Environment | tools. Critical tools are either unknown or | tools require modification. | Critical tools require mission | production, and critical tools. | | | | new. | | specific modification. | critical tools. | | | | | | | | | 6 | Software
Troubleshooting | Problems open, solutions under | Problems open, solutions under investigation, successfully | Problems open, solutions identified and corrective | Not open problems or corrective actions | | | Troubleshooting | investigation, not | duplicated. | actions inwork. | verified for open | | | | duplicated. | | | problems. | | 7 | ELV program | No insight. | Insight limited to review of | Insight includes mission | Extensive insight | | | office insight | | mission unique change items. | unique and process level. | allows risk | | | | | | | identification and mitigation activity. | | | 14: | 3.7 (%) | 3.5 | 26. | | | 8 | Mission Profile | New profile. | Mission profile segments fit collective experience. | Mission profile falls in class of flight experience. | Reflight of previous mission. | | 9 | Integration | New process. | Major process modification to | Minor process modification | Established software | | | process maturity | | accommodate mission. | to accommodate mission unique | development process. | | | | | | umque | process. | | 10 | Integration | Schedule compression | Schedule compression drives | Schedule compression within | Standard lead times. | | 10 | schedule | compromises process | process decisions or repeated | experience. Minor slips in | Continuous effort. | | | | or extended work | launch date slips interrupt flow. | launch date. | | | | | delays. | | | | | 1 1 | Integration tools | New tools for | Major modifications driven by | Minor modifications to | Heritage tools. | | 11 | integration tools | autogeneration of flight | rehost, process change, cost | accommodate mission unique | Tieritage toois. | | | | critical parameters. | reduction | or flight experience. | | | | | | | | | | 6 | Launch Site I | ntegration | | | | | 1 | Launch site | Systems fail to meet | Fails to meet significant launch | Fails to meet minor launch | Meets or exceeds | | | Operations
Concept | launch site concept of operations major | site operations requirements | site operations requirements | launch site operations | | | Сопсорт | requirements | | | requirements | | 2 | Support | Extensive peculiar | Significant peculiar support | Some peculiar support | No peculiar support | | | Equipment | support equipment | equipment required by KSC | equipment required by KSC | equipment required | | | | required by KSC | | | by KSC | | 3 | Mission support | Major system broke | Major system broke with repair | Minor system malfuction | Facility fully | | | facilities | with no near term solution | identified and in work | with repair identified and in work | function to know requirements | | | | SOLUTION | | WOLK | requirements | | | | 27 100 1 1 1 1 | 5 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | n 1111 1 11 | | |---|------------------|------------------------|--|--------------------------------|-----------------------| | 4 | Requirements | | Process established with trial | Process established with | Process and model | | | Identification | | model but not yet | proven model and being | well established and | | | | identify requirements | proven/implemnted | implemented | requirements | | | | | | | identified and | | | | | | | approved | | 5 | Requirements | | Complex requirements | Typical requirements | Little or no | | | Complexity | | interaction based on existing | interaction based on new | requirements | | | | new design | design | design | interaction based on | | | | | | | existing design | | 6 | Requirements | High requirements | Significant requirements change | | Little or no | | | Volatility | change or growth | or growth activity | to occur in some critical | requirements change | | | | activity | | requirements | activity | | 7 | Requirements | Informal flowdown | Requirements flowdown and | Requirements flowdown and | Requirements | | | Flowdown and | 10,,00,,11 | | documentation flowed down | flowdown and | | | Assumptions | | WBS level 3, including | to WBS level 3, including | documentation | | | F | | suppliers | suppliers | completed | | | | | | 11 | including suppliers | | | | | | | | | 8 | Requirements | Verification methods | Verification methodst do not | Verification methods exist for | Verification | | | Verifiability | do not exist for most | exist for some critical | most requirements | methods exist for all | | | | requirements | requirements | _ | requirements with | | | | | | | minor exceptions | | 7 | Safety | | | | | | 1 | Safety design | New concepts and/or | New concepts and/or systems - | Concept extensively tested at | Thoroughly tested | | 1 | concept | systems - never tested | some test bed experience | system level with limited | on prototypes with | | | | at system level | r | operational or prototype | operational | | | | | | experience | experience or COTS | | | | | | - | • | | 2 | System Integrity | | Critical system with limited | Critical system with fault | Comprehensive fault | | | | | fault detection and failure | detection and limited failure | detection and failure | | | | failure mitigation | mitigation | mitigation | mitigation | | 3 | Hazardous | Unknown or does not | Requires significant work to | Believed to comply with laws | Documented | | | Materials | comply with laws | comply with laws and/or | | compliance with | | | | | regulations | reservations | laws and/or | | | | | | | regulations | | | | | | | S | ### ATTACHMENT A Continued Cost Risk Criteria | | | | | Likelihood Level | | |----|--|--|--|--|---| | # | Risk | 4 | 3 | 2 | 1 | | | Category | High (91-99%) | Significant (41-90%) | Moderate (10-40%) | Low (1-9%) | | 1 | Key Personnel | Expertise not assigned to program | Core expertise only assigned to program | Core expertise assigned with other personnel available but not yet assigned | All required expertise assigned and fully trained | | 2 | Processes | Processes are informal | Processes are partially documented and approved | Processes are largely documented and approved | Standard processes are in place and approved | | 3 | Mission/project
Budget
Prediction | Limited cost data is available | Estimate based primarily on parametrics | Estimate based on mix of parametrics and actuals | Estimate based primarily on actual costs | | 4 | Maintenance & Support | Government assumes
all risks for
maintenance and
support | Government assumes most risks for maintenance and support | Government assumes some risks for maintenance and support | Contractor assumes
all risks for
maintenance and
support | | 7 | Supplier
Selection | Identification of development contractors required | Non-qualified source identified | Single qualified source | Dual qualified sources | | 8 | Cost Prediction
Maturity | Limited cost data is available | Estimate based primarily on parametrics | Estimate based on mix of parametrics and actuals | Estimate based on actual costs or NTEs | | 10 | Supplier History | Unknown or
unacceptable cost,
schedule, or technical
performance on
relevant contracts | Unacceptable cost, schedule, or technical performance on some relevant contracts | Marginal cost, schedule, or
technical performance on
relevant contracts | Outstanding cost,
schedule, and
technical
performance on
relevant contracts | | 11 | Supplier
Manufacturing | Will not accept small orders | May not accept small orders | Will accept limited number of small orders | Will accept
unlimited number
of small orders | | 13 | Supplier
Proprietary
Rights | Supplier owns the
sole rights to a critical
design, process, or
technology | Supplier owns the sole rights
to a critical design, process, or
technology but will negotiate
license | Proprietary rights to a critical
design, process, or technology
are licensed to the prime or
another supplier | Dual suppliers with
independent rights
to a critical design,
process, or
technology or No
proprietary rights
involved | | 14 | Supplier
Surveillance | Supplier performance
surveillance
performed as needed | Supplier performance
surveillance performed on a
scheduled basis by a 3rd party | Supplier performance
surveillance performed on a
scheduled basis by the program | Suppliers
integrated into the
program | | 15 | Funding | Inadequate funding | Dependent on external funding | Marginal funding available with management reserve | Adequate funding available with management reserve | | | Requirements
Flow down and
Assumptions | Requirements
undefined | Requirements somewhat known and understood | Requirements known & understood; implementation planning not started | Requirements and
their
implementation
known and
understood | | 17 | Requirements
Volatility | High requirements change or growth activity | Significant requirements change or growth activity | Changes occurring or likely to occur in some critical requirements | Little or no requirements change activity | ### ATTACHMENT A Continued Schedule Risk Criteria | | | Likelihood Level | | | | | |---|-----------------------------------|---|--|--|---|--| | # | Risk Category | 4
High (91-99%) | 3
Significant (41-90%) | 2
Moderate (10-40%) | 1
Low (1-9%) | | | 1 | Schedule Dependency | Dependent upon
multiple critical path
activities | Dependent upon one critical path activity | Dependent on multiple non-
critical path activities | Dependent on one
non-critical path
activity or No
schedule
dependency | | | 2 | Contingency
Scheduling | Very tight schedule
under ideal
circumstances | Contingencies will require overtime or freetime | Contingencies have been identified and incorporated into the schedule | Schedule includes
more than
adequate time for
contingencies | | | 3 | Equipment, Data, and Approvals | > 80 % of tasks
depend on external
equipment, data, or
approvals | 60 - 80 % of tasks depend on
external equipment, data, or
approvals | 10 - 60 % of tasks depend on
external equipment, data, or
approvals | <10 % of tasks
depend on external
equipment, data, or
approvals | | | 4 | Key Personnel | Expertise not assigned to program | Core expertise only assigned to program | Core expertise assigned with
other personnel available but
not yet assigned | All required expertise assigned | | | 5 | Facilities and Capital | Capital investment or
new facility needed
but not approved | Capital investment or new facility needed and approved | Capital investment or facility
in place and allocated but not
yet available to program | All resources in place | | | 6 | Schedule Maturity | Top level, time-based schedule | Intermediate level, time-based schedule | Intermediate level, event-
based schedule with most
predecessors and successors
defined | Detailed,
networked, event-
based schedule
with most
predecessors and
successors defined | | | 7 | Program Similarity | Never been done
before by this core
program team | Only slight similarity to direct previous experience | 50% similarity | Major features
identical to a
previous program | | | 8 | Program Experience | Never been done
before by this core
program team | Program experience resides in just a few individuals | Program experience resides in
a minority but key program
individuals | Program
experience resides
in majority of
individuals | | | 9 | Configuration and Data Management | Configuration and data management processes are informal | Configuration and data
management processes are
partially documented and
approved | Configuration and data
management processes are
approved and being
implemented | Configuration and data management processes are mostly implemented | | | 11 | Processes | Processes are informal | Processes are partially documented and approved | Processes are largely
documented and approved | Processes are in
place and approved
with documented
continuous
improvement | |----|---|--|--|--|---| | 12 | Supplier Selection | Identification of development of contractors required | Non-qualified source | Single qualified source | Dual qualified sources | | 13 | Supplier history | Unknown or
unacceptable cost,
schedule, or technical
performance on
relevant contracts | | Marginal cost, schedule, or
technical performance on
relevant contracts | Outstanding cost,
schedule, and
technical
performance on
relevant contracts | | 14 | Supplier
Manufacturing | Will not accept small orders | May not accept small orders | Will accept limited number of small orders | Will accept
unlimited number
of small orders | | 15 | Supplier Proprietary
Rights | rights to a critical | Supplier owns the sole rights to
a critical design, process, or
technology but will negotiate
license | Proprietary rights to a critical
design, process, or technology
are licensed to the prime or
another supplier | Dual suppliers
with independent
rights to a critical
design, process, or
technology or No
proprietary rights
involved | | 16 | Supplier Surveillance | Supplier performance
surveillance
performed as needed | Supplier performance
surveillance performed on a
scheduled basis by a third party | Supplier performance
surveillance performed on a
scheduled basis by the
program | Suppliers
integrated into the
program Integrated
Product Teams and
TPM | | 17 | Requirements
Flowdown and
Assumptions | Requirements undefined | Requirements somewhat known and understood | Requirements known & understood; implementation planning not started | Requirements and
their
implementation
known and
understood | | 18 | Requirements
Volatility | High requirements change or growth activity | Significant requirements change or growth activity | Changes occurring or likely to occur in some critical requirements | Little or no requirements change activity | | 19 | Schedule
Deconfliction | | LSP and spacecraft schedules have been reviewed together with major conflicts identified | LSP and spacecraft schedules have been reviewed together with minor conflicts identified | LSP and spacecraft
schedules have
been reviewed
together with no
conflicts identified |